skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Verite, Mathieu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this article, we focus on the communication costs of three symmetric matrix computations: i) multiplying a matrix with its transpose, known as a symmetric rank-k update (SYRK) ii) adding the result of the multiplication of a matrix with the transpose of another matrix and the transpose of that result, known as a symmetric rank-2k update (SYR2K) iii) performing matrix multiplication with a symmetric input matrix (SYMM). All three computations appear in the Level 3 Basic Linear Algebra Subroutines (BLAS) and have wide use in applications involving symmetric matrices. We establish communication lower bounds for these kernels using sequential and distributed-memory parallel computational models, and we show that our bounds are tight by presenting communication-optimal algorithms for each setting. Our lower bound proofs rely on applying a geometric inequality for symmetric computations and analytically solving constrained nonlinear optimization problems. The symmetric matrix and its corresponding computations are accessed and performed according to a triangular block partitioning scheme in the optimal algorithms. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026